An extension problem related to the fractional Laplacian
نویسندگان
چکیده
The operator square root of the Laplacian (−△) can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition. In this paper we obtain similar characterizations for general fractional powers of the Laplacian and other integro-differential operators. From those characterizations we derive some properties of these integro-differential equations from purely local arguments in the extension problems.
منابع مشابه
Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملAn Extension Problem for the Cr Fractional Laplacian
We show that the conformally invariant fractional powers of the sub-Laplacian on the Heisenberg group are given in terms of the scattering operator for an extension problem to the Siegel upper halfspace. Remarkably, this extension problem is different from the one studied, among others, by Caffarelli and Silvestre.
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملOptimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift
We prove existence, uniqueness and optimal regularity of solutions to the stationary obstacle problem defined by the fractional Laplacian operator with drift, in the subcritical regime. As in [1], we localize our problem by considering a suitable extension operator introduced in [2]. The structure of the extension equation is different from the one constructed in [1], in that the obstacle funct...
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کامل